Abstract

Road traffic is responsible for the majority of air pollutant emissions in the cities, often presenting high concentrations that exceed the limits set by the EU. This poses a serious threat to human health. In this sense, modelling methods have been developed to estimate emission factors in the transport sector. Countries consider emission inventories to be important for assessing emission levels in order to identify air quality and to further contribute in this field to reduce hazardous emissions that affect human health and the environment. The main goal of this work is to design and implement an artificial intelligence-based (AI) system to estimate pollution and consumption of real-world traffic roads. The system is a pipeline structure that is comprised of three fundamental blocks: classification and localisation, screen coordinates to world coordinates transform and emission estimation. The authors propose a novel system that combines existing technologies, such as convolutional neural networks and emission models, to enable a camera to be an emission detector. Compared with other real-world emission measurement methods (LIDAR, speed and acceleration sensors, weather sensors and cameras), our system integrates all measurements into a single sensor: the camera combined with a processing unit. The system was tested on a ground truth dataset. The speed estimation obtained from our AI algorithm is compared with real data measurements resulting in a 5.59% average error. Then these estimations are fed to a model to understand how the errors propagate. This yielded an average error of 12.67% for emitted particle matter, 19.57% for emitted gases and 5.48% for consumed fuel and energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.