Abstract

This article considers the sequential monitoring problem of variance change in stationary and non stationary time series. We suggest a CUSUM of squares procedure to detect variance change in infinite order moving average processes, and a residual CUSUM of squares procedure to detect variance change in non stationary autoregressive processes. Moreover, we introduce a bandwidth parameter to improve the monitoring power when change point does not occur at the early stage of monitoring. It is shown that both procedures have the same null distribution. The procedures are illustrated via a simulation study and an investigation of daily Mexico/US exchange rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.