Abstract

Thiophenol, which is a highly toxic sulfhydryl compound widely used in chemical industry, is an environmental pollutant that threatens human health significantly. It is of great importance to detect highly toxic thiophenols in both environmental and biological system. Thus, the need to develop rapid response, selective and sensitive probes is urgent. In this study, a novel probe was presented for the detection of thiophenols based on an intramolecular charge transfer (ICT) mechanism. This probe exhibits rapid response, broad pH adaptation (2−10), highly selectivity, a large Stokes shift (131 nm) and 40-fold enhancement in fluorescence. Besides, this probe showed low toxicity towards human cell HEK293 and could be applied to detect thiophenol both in living cells, zebrafish and environmental water samples with good recovery (over 94%). All the results indicated that this probe could be a promising sensor for applications for thiophenol derivatives detection in both environmental and biological sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call