Abstract

During scaled hydraulic fracturing experiments in our laboratory, the fracture growth process is monitored in a time‐lapse experiment with ultrasonic waves. We observe dispersion of compressional waves that have propagated across the hydraulic fracture. This dispersion appears to be related to the width of the hydraulic fracture. This means that we can apply the dispersion measurements to monitor the width of the hydraulic fracture in an indirect manner. For a direct determination of the width, the resolution of the signal is required to distinguish the reflections that are related with two distinct fluid/solid interfaces delimiting the hydraulic fracture from its solid embedding. To make this distinction, the solid/fluid interfaces must be separated at least one eighth of a wavelength and represent sufficient impedance contrast. The applicability of the indirect dispersion measurement method however, extends to a fracture width that is in the order of 1% of the incident wavelength. The time‐lapse ultrasonic measurements allow us to relate the small difference in arrival time and amplitude between two measurements solely to the small changes in the width of the fracture. Additional experimental data show that shear waves are completely shadowed by hydraulic fractures, indicating that there is no acoustic contact mechanism at the fracture interface. Therefore we think it is appropriate to use a thin fluid‐filled layer model for these hydraulic fractures instead of the standard empirically oriented linear slip model. Nevertheless, the thin layer model is consistent with the linear‐slip model, if interpreted correctly. A comparison of width measurements inside the wellbore and width estimates by means of dispersion measurements close to the wellbore shows that the method can be successfully applied, at least under laboratory conditions, and that small changes in the width of the fracture are directly expressed in the dispersion of the transmitted signal. This opens the way for the important new application of width monitoring of hydraulic fractures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.