Abstract

The thermal disruption of collagen I in rat tail tendon is investigated with second-harmonic generation (SHG) microscopy. We investigate its effects on SHG images and intensity in the temperature range 25 degrees-60 degrees C. We find that the SHG signal decreases rapidly starting at 45 degrees C. However, SHG imaging reveals that breakage of collagen fibers is not evident until 57 degrees C and worsens with increasing temperature. At 57 degrees C, structures of both molten and fibrous collagen exist, and the disruption of collagen appears to be complete at 60 degrees C. Our results suggest that, in addition to intensity measurement, SHG imaging is necessary for monitoring details of thermally induced changes in collagen structures in biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.