Abstract

We present a method for determining the optical and thermal properties of layered materials, applicable to retinal laser therapy, using phase-resolved OCT. Transient heating of a tissue phantom is achieved by focusing a laser pulse onto a buried absorbing layer. Optical path length changes between the top of the phantom and the scattering absorbing layer induced by material expansion are extracted from the sequential B-scans. The absorption coefficient, heat conductivity and thermal expansion coefficient of the polymer are determined by matching the experimental data to a thermomechanical model of the tissue, yielding a temperature precision <2%, well below damage threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.