Abstract

AbstractThe stability of Aerosil‐silica dispersions is analyzed in dependence on the addition of polycations with different charge density and hydrophobic modification using the analytical centrifuge LUMiSizer. This novel centrifugal sedimentation method allows the direct calculation of the stability parameters like sedimentation velocity and prediction of the shelf life. The highly charged polycation poly (diallyl‐dimethylammonium chloride) (PDADMAC) is compared with tailored cationic polyelectrolytes of equal degree of polymerization but lower and different charge density as well as various hydrophobic substitutions. The used technique allows to accelerate demixing and to quantify the stability of dispersions in a direct way. All polymers under study are able to stabilize aerosil dispersions, but the shelf life strongly depends on the polymer concentration. Typically for polycations, the stability increases with the polymer concentration whereas at low‐polymer content flocculation can be detected. In this context, the behavior of PDADMAC and three cationic PVB derivatives is similar, but, whereas the stability of PDADMAC containing dispersions decreases at higher polymer concentrations, PVB derivatives are effective stabilizers at higher concentrations too. The highest increase of the stability with increasing polymer concentration is obtained with the ampholytic terpolymer TP that has the lowest cationic charge. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.