Abstract
Heavy metal contamination in urban land has become a serious environmental problem in large cities. Visible and near-infrared spectroscopy (vis-NIR) has emerged as a promising method for monitoring copper (Cu), which is one of the heavy metals. When using vis-NIR spectroscopy, it is crucial to consider sample similarity. However, there is limited research on studying sample similarities and determining their relative importance. In this study, we compared three types of similarities: spectral, compositional, and spatial similarities. We collected 250 topsoil samples (0–20 cm) from Shenzhen City in southwest China and analyzed their vis-NIR spectroscopy data (350–2500 nm). For each type of similarity, we divided the samples into five groups and constructed Cu measurement models. The results showed that compositional similarity exhibited the best performance (Rp2 = 0.92, RPD = 3.57) and significantly outperformed the other two types of similarity. Spatial similarity (Rp2 = 0.73, RPD = 1.88) performed slightly better than spectral similarity (Rp2 = 0.71, RPD = 1.85). Therefore, we concluded that the ranking of the Cu measurement model’s performance was as follows: compositional similarity > spatial similarity > spectral similarity. Furthermore, it is challenging to maintain high levels of similarity across all three aspects simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.