Abstract

In situ second harmonic generation (SHG) coupled with extinction spectroscopy is used for real-time monitoring of seed-mediated growth dynamics of colloidal citrate-stabilized gold nanoparticles in water. The time-dependent in situ SHG results capture an early stage of the growth process where a large enhancement in the SHG signal is observed, which is attributed to the formation of plasmonic hot spots from a rough and uneven nanoparticle surface. The temporal peak in the SHG signal is followed by a decay that is fit to an exponential function to characterize the size-dependent nanoparticle growth lifetime, which varies from 0.45 to 1.7 min for final nanoparticle sizes of 66 and 94 nm, respectively. This early growth stage also corresponds to a broadening of the plasmon spectra, as monitored using time-dependent in situ extinction spectroscopy. Over the course of the seed-mediated growth reaction, the nanoparticle becomes more thermodynamically stable through surface reconstruction resulting in a smoother...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call