Abstract
In the present work, dye-based sum-frequency generation (SFG) imaging using sodium 4-[4-(dibutylamino)phenylazo]benzenesulfonate (butyl orange, BO) as a new non-fluorescent specific azo dye is employed to monitor the morphological evolution of giant vesicles (GVs). After loading BO to the membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single-component GVs, the outermost membranes were clearly visualized using SFG microscopy, which provided images of the distinct outer and inner faces of the lipid bilayers. In addition, SFG-active vesicles were detected also inside the GVs, depending on the dye concentrations. The dye-based SFG imaging technique provided experimental evidence that these oligolamellar vesicles containing an SFG-active interior had been formed after BO loading. The formation process of the oligolamellar vesicles with inner SFG-active vesicles was successfully monitored, and their formation mechanism was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.