Abstract

Defects (oxygen vacancies and interstitial cations) in oxide semiconductors have recently been invoked as a key property behind increased photocatalytic reaction rates. In this work, we have monitored by transient absorption spectroscopy (TAS) excited electrons in the conduction band decaying into the invoked traps to extract their lifetime using a rutile single crystal instead of the more conveniently used powder homologue. This is preferred in order to rule out grain boundary, degree of crystallinity, and size effects among other parameters that would obscure the results. It was found, in the energy region investigated (1.3-1.8 eV), that the lifetime of excited electrons is about four times shorter for the bulk defect crystal when compared to the fresh one. This indicates that the created defects (mostly oxygen defects and interstitial Ti cations) are unlikely to contribute to reaction rate enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call