Abstract

Ball mills are extensively used in the size reduction process of different ores and minerals. The fill level inside a ball mill is a crucial parameter which needs to be monitored regularly for optimal operation of the ball mill. In this paper, a vibration monitoring-based method is proposed and tested for estimating the fill level inside a laboratory-scale ball mill. A vibration signal is captured from the base of a laboratory-scale ball mill by using a ± 5 g accelerometer. Features are extracted from the vibration signal by using different transforms such as fast Fourier transform, discrete wavelet transform, wavelet packet decomposition, and empirical mode decomposition. These features are given as input to an artificial neural network which is used to predict the percentage fill level inside the ball mill. In this paper, the predicted fill level obtained by using different features are compared. It is found that the predicted fill level due to features obtained after fast Fourier transform outperforms other transforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.