Abstract

We detail an experimental strategy for tracking the generation and time-development of electronic coherence within the singly excited manifold of an energy-transfer dimer. The technique requires that the two monomers have nonparallel electronic transition-dipole moments and that these possess fixed orientations in space. It makes use of two-dimensional wave-packet interferometry (WPI or whoopee) measurements in which the A, B, C, and D pulses have respective polarizations e, e, e, and e'. In the case of energy-transfer coupling that is weak or strong compared to electronic-nuclear interactions, it is convenient to follow the evolution of intersite or interexciton coherence, respectively. Under weak coupling, e could be perpendicular to the acceptor chromophore's transition dipole moment and the unit vector e' would be perpendicular to the donor's transition dipole. Under strong coupling, e could be perpendicular to the ground-to-excited transition dipole to the lower exciton level and e' would be perpendicular to the ground-to-excited transition dipole to the upper exciton level. If the required spatial orientation can be realized for an entire ensemble, experiments of the kind proposed could be performed by either conventional four-wave-mixing or fluorescence-detected WPI methods. Alternatively, fluorescence-detected whoopee experiments of this kind could be carried out on a single energy-transfer dimer of fixed orientation. We exhibit detailed theoretical expressions for the desired WPI signal, explain the physical origin of electronic coherence detection, and show calculated observed-coherence signals for model dimers with one, two, or three internal vibrational modes per monomer and both weak and strong energy-transfer coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.