Abstract

We introduce a new graph-theoretic concept in the area of network monitoring. A set $M$ of vertices of a graph $G$ is a \emph{distance-edge-monitoring set} if for every edge $e$ of $G$, there is a vertex $x$ of $M$ and a vertex $y$ of $G$ such that $e$ belongs to all shortest paths between $x$ and $y$. We denote by $dem(G)$ the smallest size of such a set in $G$. The vertices of $M$ represent distance probes in a network modeled by $G$; when the edge $e$ fails, the distance from $x$ to $y$ increases, and thus we are able to detect the failure. It turns out that not only we can detect it, but we can even correctly locate the failing edge. In this paper, we initiate the study of this new concept. We show that for a nontrivial connected graph $G$ of order $n$, $1\leq dem(G)\leq n-1$ with $dem(G)=1$ if and only if $G$ is a tree, and $dem(G)=n-1$ if and only if it is a complete graph. We compute the exact value of $dem$ for grids, hypercubes, and complete bipartite graphs. Then, we relate $dem$ to other standard graph parameters. We show that $demG)$ is lower-bounded by the arboricity of the graph, and upper-bounded by its vertex cover number. It is also upper-bounded by twice its feedback edge set number. Moreover, we characterize connected graphs $G$ with $dem(G)=2$. Then, we show that determining $dem(G)$ for an input graph $G$ is an NP-complete problem, even for apex graphs. There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard to compute an asymptotically better approximation, even for bipartite graphs of small diameter and for bipartite subcubic graphs. For such instances, the problem is also unlikey to be fixed parameter tractable when parameterized by the solution size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.