Abstract

Cesium lead perovskites, in the form of CsPbX3 or Cs4PbX6, have been widely used for various optoelectronic applications due to their exceptionally good optical properties. In this study, the effect of Mn doping on the structural and optical properties of cesium lead halide perovskite crystals are investigated from both experimental and theoretical points of view. It is found that adding MnCl2 during the synthesis not only leads to a Mn-driven structural phase transition from Cs4PbBr6 to CsPbCl3 but also triggers the Br– to Cl– halide exchange. On the other hand, it is observed that, under UV illumination, the color of Mn-doped crystals changes from orange to blue in approximately 195 h. While the intensity of Mn-originated photoluminescence emission exponentially decays in time, the intensity of CsPbCl3-originated emission remains unchanged. In addition, diffusive motion of Mn ions results in both a growing population of MnO2 at the surface and transition of the host into a cesium-rich Cs4PbCl6 phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.