Abstract

The timely, rapid, and accurate near real-time observations are urgent to monitor the damage of corn armyworm, because the rapid expansion of armyworm would lead to severe yield losses. Therefore, the potential of machine learning algorithms for identifying the armyworm infected areas automatically and accurately by multispectral unmanned aerial vehicle (UAV) dataset is explored in this study. The study area is in Beicuizhuang Village, Langfang City, Hebei Province, which is the main corn-producing area in the North China Plain. Firstly, we identified the optimal combination of image features by Gini-importance and the comparation of four kinds of machine learning methods including Random Forest (RF), Multilayer Perceptron (MLP), Naive Bayesian (NB) and Support Vector Machine (SVM) was done. And RF was proved to be the most potential with the highest Kappa and OA of 0.9709 and 0.9850, respectively. Secondly, the armyworm infected areas and healthy corn areas were predicted by an optimized RF model in the UAV dataset, and the armyworm incidence levels were classified subsequently. Thirdly, the relationship between the spectral characteristics of different bands and pest incidence levels within the Sentinel-2 and UAV images were analyzed, and the B3 in UAV images and the B6 in Sentinel-2 image were less sensitive for armyworm incidence levels. Therefore, the Sentinel-2 image was used to monitor armyworm in two towns. The optimized dataset and RF model are effective and reliable, which can be used for identifying the corn damage by armyworm using UAV images accurately and automatically in field-scale. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call