Abstract

This study illustrates the successful application of near-infrared reflectance spectroscopy extended with chemometric modeling to profile Cd, Cu, Pb, Ni, Cr, Zn, Mn, and Fe in cultivated and fertilized Haplic Luvisol soils. The partial least-squares regression (PLSR) models were built to predict the elements present in the soil samples at very low contents. A total of 234 soil samples were investigated, and their reflectance spectra were recorded in the spectral range of 1100–2500 nm. The optimal spectral preprocessing was selected among 56 different scenarios considering the root mean squared error of prediction (RMSEP). The partial robust M-regression method (PRM) was used to handle the outlying samples. The most promising models were obtained for estimating the amount of Cu (using PRM) and Pb (using the classic PLS), leading to RMSEP expressed as a percentage of the response range, equal to 9.63% and 11.5%, respectively. The respective coefficients of determination for validation samples were equal to 0.86 and 0.58, respectively. Assuming similar variability of model residuals for the model and test set samples, coefficients of determination for validation samples were 0.94 and 0.89, respectively. Moreover, the favorable PLS models were also built for Zn, Mn, and Fe with coefficients of determinations equal to 0.87, 0.87, and 0.79.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.