Abstract
Objective. Our objective was to compare three electroencephalography (EEG)-based methods with anesthesiologist clinical judgment of the awake and anesthetized unconscious states. Methods. EEG recorded from 25 channels and from four channel bilateral Bispectral index (BIS) electrodes were collected from 20 patients undergoing surgery with general anesthesia. To measure connectivity we applied Directed Transfer Function (DTF) in eight channels of the EEG, and extracted data from BIS over the same time segments. Shannon's entropy was applied to assess the complexity of the EEG signal. Discriminant analysis was used to evaluate the data in relation to clinical judgment. Results. Assessing anesthetic state relative clinical judgment, the bilateral BIS gave the highest accuracy (ACC) (95.4%) and lowest false positive discovery rate (FDR) (0.5%) . Equivalent DTF gave 94.5% for ACC and 2.6% for FDR. Combining all methods gave ACC = 94.9% and FDR = 1%. Generally, entropy scored lower on ACC and higher on FDR than the other methods (ACC 90.87% and FDR 4.6%). BIS showed at least a one minute delay in 18 of the 20 patients. Conclusions. Our results show that BIS and DTF both have a high ACC and low FDR. Because of time delays in BIS values, we recommend combining the two methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.