Abstract

A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.