Abstract

Currently, immunosuppressive therapy in kidney transplant recipients is center-specific, protocol-driven, and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. The individualization of immunosuppression requires the development of assays able to reliably quantify and/or predict the magnitude of the recipient's immune response toward the allograft. As alloreactive T cells are central mediators of allograft rejection, monitoring T cell alloreactivity has become a priority for the transplant community. Among available assays, flow cytometry based phenotyping, T cell proliferation, T cell cytokine secretion, and ATP release (ImmuKnow), have been the most thoroughly tested. While numerous cross-sectional studies have found associations between the results of these assays and the presence of clinically relevant post-transplantation outcomes, data from prospective studies are still scanty, thereby preventing widespread implementation in the clinic. Future studies are required to test the hypothesis that tailoring immunosuppression on the basis of results offered by these biomarkers leads to better outcomes than current standard clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.