Abstract

This work describes an approach for calculating and measuring dipolar interactions in multispin systems to monitor conformational changes in icosahedral protein cages using site-directed spin labeling. Cowpea chlorotic mottle virus (CCMV) is used as a template that undergoes a pH-dependent reversible capsid expansion wherein the protein cage swells by 10%. The sequence-position-dependent geometric presentation of attached spin-label groups provides a strategy for targeting amino acid residues most probative of structural change. The labeled protein cage residues and structural transition were found to affect the local mobility and dipolar interactions of the spin label, respectively. Line-shape changes provided a spectral signature that could be used to follow the conformational change in CCMV coat dynamics. The results provide evidence for a concerted swelling process in which the cages exist in only two structural forms, with essentially no intermediates. This methodology can be generalized for all symmetry types of icosahedral protein architectures to monitor protein cage dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.