Abstract

Homodyne X-ray diffraction signals produced by classical light and classical detectors are given by the modulus square of the charge density in momentum space |σ(q)|2, missing its phase, which is required in order to invert the signal to real space. We show that quantum detection of the radiation field yields a linear diffraction pattern that reveals σ(q) itself, including the phase. We further show that repeated diffraction measurements with variable delays constitute a novel multidimensional measure of spontaneous charge-density fluctuations. Classical diffraction, in contrast, only reveals a subclass of even-order correlation functions. Simulations of two-dimensional signals obtained by two diffraction events are presented for the amino acid cysteine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.