Abstract

GFP-based fluorescence resonance energy transfer (FRET) probes that visualize local activity-changes of Ras and Rho GTPases in living cells are now available for examining the spatio-temporal regulation of these proteins. This article describes principles and strategies to develop intramolecular FRET probes for Ras- and Rho-family GTPases. The procedure for characterizing candidate probes, and image acquisition and processing are also explained. An optimal FRET probe should have (i) a wide dynamic range (which means a high sensitivity), (ii) a high fluorescence intensity, (iii) target specificity, and (iv) a minimal perturbation to endogenous signaling cascades. Although an improvement of FRET probes should be executed in a trial-and-error manner, practical tips for optimization are provided here. In addition, we illustrate some applications of FRET probes for neuronal cells, which are composed of diverse subcellular compartments with different functions; thus, tools to decipher the dynamics of GTPase activity in each compartment have long been desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.