Abstract

The embryo of the African clawed frog Xenopus laevis plays a central role in the field of cell and developmental biology. One of the strengths of Xenopus as model system lies in the high degree of conservation between amphibians and mammals in the molecular mechanisms controlling tissue patterning and differentiation. As such, many signaling cascades were first investigated in frog embryos and then confirmed in mouse and/or human cells. The TGF-β signaling cascade greatly benefited from this model system. Here we review the overall logic and experimental planning for studying Smad activity in vivo in the context of Xenopus embryonic development, and provide a guide for the interpretation of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.