Abstract
An active acoustic method is used to monitor the setting and hardening of early age concrete, by recording and analyzing the wave velocity and attenuation coefficient. The effects of water-to-cement ratio and pozzolanic materials (fly ash and silica fume) are examined. The central frequency of the acoustic excitation is 6kHz, which is much lower than that of ultrasound and can enhance the signal-to-noise ratio when applied to very early age concrete. It was found that the wave velocity measurement can reveal clearly three stages in the hydration process of early age concrete, and an aluminate hydrates phase transition period can be defined based on the attenuation coefficient measurement. Lower water-to-cement ratio and the incorporation of more silica fume facilitate a faster development of both wave velocity and attenuation coefficient, and achieve higher one-day wave velocity values, showing their accelerating effects. The incorporation of fly ash postpones the development of both wave velocity and attenuation coefficient, and achieves lower one-day wave velocity values, showing its retardation effect. The attenuation coefficients of all concretes tend to converge to the same value, i.e. 4Np/m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.