Abstract

Predicting behaviour of hydrogen bonds with varying temperature, in particular-correlating donor-acceptor distances in the O-H···O hydrogen bonds with the frequencies of O-H stretching vibrations is important for understanding dynamics of biomolecules and phase transitions in crystals. A commonly used correlation suggested earlier in the literature is based on statistical analysis of different compounds [A. Novak, Structure and Bonding, 1974, 18, 177; K. Nakamoto, M. Margoshes, R. E. Rundle, J. Am. Chem. Soc., 1955, 77, 6480]. The present study is a rare example when correlations between geometry and energy parameters have been found for selected individual hydrogen bonds in the same crystalline compound at multiple temperatures. The properties of several types of O-H···O hydrogen bonds in bis(DL-serinium) oxalate dihydrate and DL-alaninium semi-oxalate monohydrate have been studied by a combination of variable-temperature single-crystal X-ray diffraction and polarized Raman spectroscopy. The changes in the hydrogen bonds geometry could be compared with the changes of the corresponding spectral modes. The correlation suggested by Novak is roughly followed, better for medium and weak, than for short hydrogen bonds. Fine details of spectral changes differ for individual bonds. The way how H-bonds are affected by cooling depends on their environment in the crystal structure. Short O-H···O hydrogen bonds in bis(DL-serinium) oxalate dihydrate expand or remain almost unchanged on cooling, whereas in DL-alaninium semi-oxalate monohydrate all strong H-bonds are compressed under these conditions. The distortion of individual hydrogen bonds on temperature variations is correlated with the anisotropy of lattice strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call