Abstract

Fourier analysis of Moderate Resolution Image Spectrometer (MODIS) time‐series data was applied to monitor the flooding extent of the Waza‐Logone floodplain, located in the north of Cameroon. Fourier transform (FT) enabled quantification of the temporal distribution of the MIR band and three different indices: the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Enhanced Vegetation Index (EVI). The resulting amplitude, phase, and amplitude variance images for harmonics 0 to 3 were used as inputs for an artificial neural network (ANN) to differentiate between the different land cover/land use classes: flooded land, dry land, and irrigated rice cultivation. Different combinations of input variables were evaluated by calculating the Kappa Index of Agreement (KIA) of the resulting classification maps. The combinations MIR/NDVI and MIR/EVI resulted in the highest KIA values. When the ANN was trained on pixels from different years, a more robust classifier was obtained, which could consistently separate flooded land from dry land for each year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.