Abstract

Insecticides are an integral part of most of the cropping systems worldwide; however, these usually exert negative impact on the environment and non-target insects as well. Non-target insects are prone to develop resistance to insecticides due to prolonged and repeated lethal and sublethal exposures. Musca domestica is a common non-target, pollinator and nectar feeder species in cotton ecosystem, besides its status as a public health pest in human habitations. In the present work, resistance to methomyl, one of the major insecticides used for cotton pest management, was assessed in 20 M. domestica strains from the major cotton producing areas of the Punjab and Sindh provinces of Pakistan. The results revealed that toxicity values of methomyl for Punjabi and Sindhi strains ranged from 28.07 to 136.16 µg fly−1 and 29.32 to 136.87 µg fly−1, respectively. Among Punjabi strains, D.G. Khan, Lodhran, Bahawalpur, Toba Tek Singh, Bahawalnagar, Rajanpur and Jhang strains exhibited very high levels of resistance (RR > 100) to methomyl; Bhakkar, Kasur, Vehari, Layyah, Muzaffargarh and R.Y. Khan showed high resistance (RR = 51–100 fold), while the Mianwali strain showed a moderate level of resistance to methomyl (RR = 36.45 fold). In case of Sindhi strains, very high levels of resistance (> 100 fold) were reported for Sukkar and Sanghar strains, high levels of resistance (RR 51–100 fold) for Khairpur, Jamshoro and Ghotki, and moderate resistance to methomyl (38.08 fold) in the Dadu strain. There was a significant synergism of methomyl toxicity in all field strains when methomyl bioassayed along with piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) providing clues of metabolic-based mechanisms of resistance to methomyl. In conclusion, insecticides used in crop farming can cause resistance development in non-target M. domestica. It is necessary to adopt the pest management activities that are safe for the environment and non-target insect species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.