Abstract

ABSTRACT We determined the bioavailability to sediment-dwelling marine worms of polycyclic aromatic hydrocarbons (PAHs) associated with offshore sediments from 3 spill path and 3 non-spill path areas of Prince William Sound (PWS), Alaska, 12 years after the Exxon Valdez oil spill. The PAHs in sediments from 4 sites sampled in 2001 were primarily from a regional natural petrogenic background derived from organic-rich shales and natural oil seeps associated with sources southeast of PWS. Pyrogenic (combustion) PAHs, primarily from former human and industrial activities, were more abundant than petrogenic PAHs in nearshore sediments from 2 bays associated with past and current human activities. We performed sediment bioaccumulation tests with the six sediments and polychaete worms according to standard EPA protocols. All the PAHs had a very low bioavailability, as indicated by low values for biota/sediment accumulation factors (BSAFs) in the worms. Mean BSAFs for total PAHs (sum of 41 analyte groups) ranged from 0.002 to 0.009. The worms exposed to spill path and non-spill path sediments bioaccumulated small amounts of 4- and 5-ring PAHs, particularly fluoranthene and pyrene; these higher molecular weight PAHs are responsible for induction of mixed function oxygenase (MFO) activity in marine fish, birds, and mammals. These results may help to explain in part why fish from throughout PWS exhibit induced MFO activity. Elevated levels of MFO activity cannot be used as evidence of recent exposure by marine fish, birds, and mammals in the sound to Exxon Valdez oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call