Abstract

Deserts are particularly vulnerable to human impacts and have already suffered a substantial loss of biodiversity. In harsh and variable desert environments, large herbivores typically occur at low densities, and their large carnivore predators occur at even lower densities. The continued survival of large carnivores is key to healthy functioning desert ecosystems, and the ability to gather reliable information on these rare low density species, including presence, abundance and density, is critical to their monitoring and management. Here we test camera trap methodologies as a monitoring tool for an extremely rare wide-ranging large felid, the critically endangered Saharan cheetah (Acinonyx jubatus hecki). Two camera trapping surveys were carried out over 2–3 months across a 2,551km2 grid in the Ti-n-hağğen region in the Ahaggar Cultural Park, south central Algeria. A total of 32 records of Saharan cheetah were obtained. We show the behaviour and ecology of the Saharan cheetah is severely constrained by the harsh desert environment, leading them to be more nocturnal, be more wide-ranging, and occur at lower densities relative to cheetah in savannah environments. Density estimates ranged from 0.21–0.55/1,000km2, some of the lowest large carnivore densities ever recorded in Africa, and average home range size over 2–3 months was estimated at 1,583km2. We use our results to predict that, in order to detect presence of cheetah with p>0.95 a survey effort of at least 1,000 camera trap days is required. Our study identifies the Ahaggar Cultural Park as a key area for the conservation of the Saharan cheetah. The Saharan cheetah meets the requirements for a charismatic flagship species that can be used to “market” the Saharan landscape at a sufficiently large scale to help reverse the historical neglect of threatened Saharan ecosystems.

Highlights

  • Deserts cover more than 17% of the world’s land mass [1], yet are among the most poorly understood biomes

  • We did so by evaluating the size of the area delineated by the outermost camera traps and adding a buffer strip whose width is related to the mean maximum distance moved (MMDM) among multiple captures of individual cheetah within the 2008 and 2010 survey periods

  • Photographs were obtained from 15 captures of cheetah in 2008 and 17 captures in 2010

Read more

Summary

Introduction

Deserts cover more than 17% of the world’s land mass [1], yet are among the most poorly understood biomes Their relatively poor productivity, driven by low rainfall, supports low abundances of wildlife, and they tend not to attract the attention of conservationists [2], in the current global focus on biodiversity hotspots [3,4]. Monitoring enables evaluation of different management and policy interventions, understanding the impacts of anthropogenic change, and taking action to prevent the loss of species This is pertinent in the case of large carnivores in harsh and highly variable desert environments, which are likely to be especially scarce and their detectability extremely low. We use our data to test these predictions and go on to make recommendations for future surveys to confirm presence and estimate abundance

Methods and Materials
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.