Abstract

Avian radar technologies have the potential to serve an important role in the quantification of bird movements and determining patterns of bird use in areas where human–wildlife conflicts might occur (e.g., airports, wind energy facilities). Ground-truthing studies are needed to help wildlife managers understand the biological meaning of radar information, as the capabilities and limitations of these technologies are relatively unknown. We conducted a study to evaluate the efficacy of three X-band marine radar sensors for tracking red-tailed hawks (Buteo jamaicensis) on or near the airfield at Chicago’s O’Hare International Airport from September 2010 to May 2014. Specific information regarding red-tailed hawk locations derived from satellite telemetry was used to determine how frequently the three radar sensors provided corresponding tracks of these avian targets (i.e., synchronized monitoring). We examined various factors (e.g., bird altitude and distance to the radar) to determine if they had any influence on the frequency of synchronicity between satellite telemetry locations and radar tracks. We found evidence that as the distance between a hawk and the radars increased, the radars’ ability to detect and track known avian targets decreased. Overall, the frequency of synchronization events for red-tailed hawks was low. Of the 1977 red-tailed hawk locations that should have been visible to the radar sensors, 51 of these bird movements were tracked by at least one of the radar sensors (2.6%). This study provides a new methodology for evaluating the performance of radar systems for tracking birds and determining what factors might influence overall performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call