Abstract

Experiments in yeast have significantly contributed to our understanding of general aspects of biochemistry, genetics, and cell biology. Yeast models have also delivered deep insights in to the molecular mechanism underpinning human diseases, including neurodegenerative diseases. Many neurodegenerative diseases are associated with the conversion of a protein from a normal and benign conformation into a disease-associated and toxic conformation – a process called protein misfolding. The misfolding of proteins with abnormally expanded polyglutamine (polyQ) regions causes several neurodegenerative diseases, such as Huntington’s disease and the Spinocerebellar Ataxias. Yeast cells expressing polyQ expansion proteins recapitulate polyQ length-dependent aggregation and toxicity, which are hallmarks of all polyQ-expansion diseases. The identification of modifiers of polyQ toxicity in yeast revealed molecular mechanisms and cellular pathways that contribute to polyQ toxicity. Notably, several of these findings in yeast were reproduced in other model organisms and in human patients, indicating the validity of the yeast polyQ model. Here, we describe different expression systems for polyQ-expansion proteins in yeast and we outline experimental protocols to reliably and quantitatively monitor polyQ toxicity in yeast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call