Abstract

Total phenolic content (TPC) and several phenolic acids present in rice grains were compared with fungal infection and mycotoxin presence throughout the growing season. Samples of 4 rice varieties were collected in 2018 and 2019 at 3 different plant phenological stages. Total fungal and main mycotoxigenic fungi incidence were checked and mycotoxin content was analysed. On the same samples, TPC and the concentration of 8 main phenolic acids (chlorogenic acid, caffeic acid, syringic acid, 4-hydroxybenzoic acid (4-HBA), p-coumaric acid, ferulic acid, protocatecuic acid and gallic acid) were measured. The results showed significant differences between years for both fungal incidence and mycotoxin presence. In 2018 there was a lower fungal presence (42%) than in 2019 (57%) while, regarding mycotoxins, sterigmatocystin (STC) was found in almost all the samples and at all growing stages while deoxynivalenol (DON) was found particularly during ripening. An interesting relationship was found between fungal incidence and TPC, and some phenolic acids seemed to be more involved than others in the plant defense system. Ferulic acid and protocatecuic acid showed a different trend during the growing season depending on fungal incidence and resulted to be positively correlated with p-coumaric acid and 4-HBA that seem involved in mycotoxin containment in field.

Highlights

  • Rice (Oryza sativa L.) is one of the most important crops in the world [1]

  • Ferulic acid and protocatecuic acid showed a different trend during the growing season depending on fungal incidence and resulted to be positively correlated with p-coumaric acid and 4-hydroxybenzoic acid (4-HBA) that seem involved in mycotoxin containment in field

  • As already found in other studies on other cereals such as maize, fungal presence increased on grains during the growing season [24,25]; in our study a significant increase in fungal incidence is noted from early dough stage and the highest incidence is registered at ripening (Table 1); only Penicillium spp. remains low and constant all season long (Table 1)

Read more

Summary

Introduction

Rice (Oryza sativa L.) is one of the most important crops in the world [1]. It is mainly cultivated and consumed in Asian regions; its consumption is currently increasing all over the world [2]. The main rice producer in Europe is Italy, accounting for around 50% of total European production; rice cultivation is located principally in northern Italy (Piedmont, Lombardy and Veneto) [3]. All the principal mycotoxin producing genera, such as Fusarium spp., Aspergillus spp. and Penicillium spp., have been found on Italian paddy rice, but only deoxynivalenol (DON) produced by F. graminearum, aflatoxins (AFs) produced by A. flavus

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.