Abstract
Mixed halide perovskites (MHPs) are a group of semiconducting materials with promising applications in optoelectronics and photovoltaics, whose bandgap can be altered by adjusting the halide composition. However, the current challenge is to stabilize the light-induced halide separation, which undermines the device's performance. Herein we track down the phase separation dynamics of CsPbBr1.2I1.8 MHP single cubic nanocrystals (NCs) and clusters as a function of time by in situ fluorescence spectromicroscopy. The particles were sorted into groups 1 and 2 using initial photoluminescence intensities. The phase separation followed by recovery kinetics under dark and photo blinking analysis suggests that group 1 behaved more like single NCs and group 2 behaved like clusters. Under the 0.64 W/cm2 laser illumination, the phase shifts for single NCs are 3.4 ± 1.9 nm. The phase shifts are linearly correlated with the initial photoluminescence intensities of clusters, suggesting possible interparticle halide transportation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.