Abstract

BackgroundThe Plasmodium falciparum multidrug resistance 1 transporter, PfMDR1, contains five amino acid polymorphisms that are suggested to be involved in altered drug transport from the parasite’s cytosol into the digestive vacuole (DV). Transport of a substrate into another intracellular compartment influences drug availability at its site of action, therefore making the parasite more susceptible or resistant to a drug. Fluo-4 is a known fluorescent substrate that can be used as a molecular tool to investigate transport dynamics of PfMDR1 in many parasite strains.MethodsSix P. falciparum strains with varying PfMDR1 mutations were loaded with Fluo-4 AM. Accumulation of the fluorophore in the DV was measured using confocal microscopy. The role of a key amino acid mutation was verified using selected parasite clones with point mutations at PfMDR1 amino acid position 1042. Equal expression of PfMDR1 was confirmed by Western blot.ResultsFluo-4 was transported by PfMDR1 into the DV of most drug-sensitive and -resistant parasites. Asparagine at PfMDR1 amino acid position 1042 was crucial for Fluo-4 transport, while the N1042D substitution abolished Fluo-4 transport. Competition studies of Fluo-4 with chloroquine, quinine and mefloquine were performed on parasites harbouring asparagine at position 1042. A distinct Fluo-4 transport inhibition pattern for each tested anti-malarial drug was observed in parasite strains of different genetic background.ConclusionThis study demonstrates that Fluo-4 can be used to investigate PfMDR1 transport dynamics in both drug-sensitive and -resistant parasites. Furthermore, direct evidence of altered Fluo-4 transport in PfMDR1 is linked to a single amino acid mutation in the substrate binding pocket. This system offers a great tool to investigate the role of substrate transport by PfMDR1 and the mutations necessary to support transport, which would lead to new insights for the development of novel anti-malarial drugs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0791-3) contains supplementary material, which is available to authorized users.

Highlights

  • The Plasmodium falciparum multidrug resistance 1 transporter, PfMDR1, contains five amino acid polymorphisms that are suggested to be involved in altered drug transport from the parasite’s cytosol into the digestive vacuole (DV)

  • To identify PfMDR1 mutation(s) crucial for Fluo-4 transport, several drug-sensitive and -resistant P. falciparum strains of different genetic backgrounds were tested for accumulation of Fluo-4 in the DV

  • While PfMDR1 has been suggested to play a role in CQ resistance, the key genetic indicator for CQS versus CQR parasites is attributed to the amino acid mutation K76T in the P. falciparum chloroquine resistance transporter (PfCRT) [21]

Read more

Summary

Introduction

The Plasmodium falciparum multidrug resistance 1 transporter, PfMDR1, contains five amino acid polymorphisms that are suggested to be involved in altered drug transport from the parasite’s cytosol into the digestive vacuole (DV). Fluo-4 is a known fluorescent substrate that can be used as a molecular tool to investigate transport dynamics of PfMDR1 in many parasite strains. Researchers found a correlation between antimalarial resistance and the Plasmodium falciparum multidrug resistance 1 transporter (PfMDR1) [2, 3]. PfMDR1 is a P-glycoprotein homologue (Pgh1) and belongs to the ATP binding cassette (ABC) transporter superfamily. It is a 162 kDa protein with two nucleotide binding domains (NBD) and twelve transmembrane domains (TMDs), with a putative substrate binding pocket in TMD11 [4]. The transporter is located in the membrane of the digestive vacuole (DV) [5], transporting substrates from the parasite’s cytoplasm into the DV [6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.