Abstract

The cyber-physical system such as wireless information and wireless power (WIPT) transfer plays an important role in the internet of things (IoT) applications. The billions of smart objects and devices are connected to the global IoT platform. To get benefit from the IoT technology, smart customers and system operators demand to supply wireless power wireless for making electronic things alive. In this way, the IoT can make greener and smart city with an interconnected digital platforms. However, it is a very difficult and challenging task for supplying wireless power to the smart objects. In order to provide wireless power to the IoT enabled devices, the wireless power transfer system can play a vital role for providing greener and sustainable environment. In light of this demand, this paper provides a comprehensive literature review and potential research challenges for WIPT incorporating wireless power transfer (WPT) system. In order to supply energy to the devices, the electricity generating electronics circuit requires to know the operating conditions of the system state, which acts as a precursor to design the controller. To know the system operating conditions of wireless power transfer system, the distributed state estimation algorithm is proposed and it convergence is analysed. Finally, the proposed algorithm is verified considering the WPT system. For doing this, the state-space framework of the WPT system is developed. Numerical simulations results show that the proposed algorithms can able to estimate and stabilise the WPT system states within a short period of time. Therefore, this framework is valuable to design WIPT and IoT platform and provide a compressive of source for researchers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call