Abstract

Large wear of diamond tools for ultra-precision cutting of soft metals deteriorates quality of machined surface, and the worn tools have to be replaced with new tools when the tool wear reaches limited wear land width of cutting edge generating finished surface. However, it is difficult to predict the tool life since all cutting tools have individual tool life. Therefore, the purpose of this study is to estimate wear land width of cutting edge of a single crystal diamond tool having large nose radius by using static cutting forces during machining. As a result of the cutting tests and measurements, it was found that the ratio of thrust force to principal force had good relation with the ratio of flank wear land area to cutting cross section area. Furthermore, according to some detailed observation of flank wear, width of flank wear land was greatly related to uncut chip thickness obtained under different cutting conditions and it was found that width of flank wear land could be estimated by measured static cutting forces and cutting conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.