Abstract
We determined water content and water distribution by fitting dielectric spectra of ischemic canine hearts between 5 MHz and 3 GHz with a newly developed model which describes heart cells and subcellular organelles as rotational ellipsoids filled with electrolyte enclosed by an isolating membrane. The fraction of dry material is modelled by spherical particles with a small dielectric permittivity. Free model parameters were water content, cell volume fraction, and the conductivity of the electrolytes. Resulting model parameters were compared to data from tissue desiccation and to conductivity changes produced by protons and lactate ions. We investigated hearts in two states: during ischemia after interruption of blood flow (pure ischemia, PI, n=5) and during ischemia after resuscitation with Tyrode's solution (IAR, n=14). The difference between water content determined by tissue desiccation and by dielectric spectroscopy was less than 0.5%. During 360 min of ischemia, water content in IAR decreased from 85±1.6% to 83±2.2% and in PI from 80±0.8% to 78±1.5%. Cellular volume fraction in IAR increased from 0.47±0.045 to 0.63±0.031 and in PI from 0.62±0.014 to 0.73±0.013, which is consistent with published morphometric data. After 180 min of ischemia, the increase of the cytosolic conductivity was 0.14±0.02 S/m as calculated from the dielectric spectrum and was similar to the conductivity increase which was roughly estimated on the basis of tissue lactate concentration. In conclusion, dielectric spectroscopy combined with our model analysis facilitates the monitoring of water content and distribution by means of nondestructive surface probes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.