Abstract

The short-term deformation behavior of immersed tunnels due to daily or monthly temperature changes and tidal variations is often not monitored but forms important input for a structural health assessment of the tunnel. In this study, distributed optical fiber sensors (DOFSs) are used to monitor the short-term (daily and monthly) deformation behavior of an immersed tunnel. Joint opening and the relative settlement differences between tunnel elements are monitored simultaneously at subhour intervals. Measurements show that the variation in the joint opening is strongly correlated with temperature change, and the joint gap has a tendency to open at low temperatures and to close at increasing temperatures. Simultaneously, the entire immersed section behaves more like a rigid body and moves upwards and downwards periodically due to tidal fluctuations in the river, with an observed vertical movement of slightly less than one millimeter. The tide also causes local tilting of tunnel segments, and this tilting behavior differs between winter and summer, which implies that the (seasonal) temperature-induced joint deformations affect the robustness of the tunnel to tidal loads. A soil-tunnel structure interaction analysis reveals that the cyclic vertical movement of the tunnel is driven by retardation of the tidal wave in deeper soil layers, which can be captured by a coupled flow model. This study provides new insights into the short-term deformation behavior of immersed tunnels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.