Abstract

AbstractUnderstanding soil water dynamics in the deep vadose zone (DVZ, below the root zone) of irrigated farmland is critical for estimating groundwater recharge and assessing the impacts of agricultural activities on groundwater quality. However, the state and movement of soil water in the DVZ remain poorly understood owing to the lack of in‐situ observations. Here, based on a 48‐m deep caisson (Critical Zone Observatory, CZO) established in a typical irrigated farmland in the piedmont region of the North China Plain, we extended the monitoring of soil water content and matric potential across the entire vadose zone profile. We found that a high soil water content and matric potential (close to or slightly higher than the field capacity) was maintained in the DVZ of typical irrigated cropland. The response of soil water in the DVZ to the water inputs at the ground surface was predominantly sequentially delayed with an increase in depth in the DVZ. As a result, the wetting front propagated into the soil layer to a depth of 38 m within 228 days. Moreover, high soil moisture contents and matric potentials in the DVZ resulted in a dramatic but explicable difference between the estimated average pore water velocity (0.73 m year−1) and the wetting front propagation rate (0.16 m day−1). This study demonstrates the unreported rapid response of soil water in the DVZ to water input at the ground surface under intensively irrigated cropland and could promote a better understanding of groundwater recharge processes with a thick unsaturated zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.