Abstract

Established nanobio interactions face the challenge that the formation of nanoparticle-protein corona complexes shields the inherent properties of the nanoparticles and alters the manner of the interactions between nanoparticles and biological systems. Therefore, many studies have focused on protein corona-mediated nanoparticle binding, internalization, and intracellular transportation. However, there are a few studies to pay attention to if the corona encounters degradation after internalization and how the degradation of the protein corona affects cytotoxicity. To fill this gap, we prepared three types of off/on complexes based on gold nanoparticles (Au NPs) and dye-labeled serum proteins and studied the extracellular and intracellular proteolytic processes of protein coronas as well as their accompanying effects on cytotoxicity through multiple evaluation mechanisms, including cell viability, adenosine triphosphate (ATP) content, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). The proteolytic process was confirmed by recovery of the fluorescence of the dye-labeled protein molecules that was initially quenched by Au NPs. Our results indicate that the degradation rate of protein corona is dependent on the type of the protein based on systematical evaluation of the extracellular and intracellular degradation processes of the protein coronas formed by human serum albumin (HSA), γ-globulin (HGG), and serum fibrinogen (HSF). Degradation is the fastest for HSA corona and the slowest for HSF corona. Notably, we also find that the Au NP-HSA corona complex induces lower cell viability, slower ATP production, lower MMP, and higher ROS levels. The cytotoxicity of the nanoparticle-protein corona complex may be associated with the protein corona degradation process. All of these results will enrich the database of cytotoxicity induced by nanomaterial-protein corona complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call