Abstract

Heat stroke is a fatal condition which usually results in central nervous system dysfunction, organism damage and even death. The relationship between heat stroke and mitochondria is still relatively unknown due to a lack of suitable tools. Herein, an aggregation-induced emission (AIE) probe CSP, by introducing a pyridinium cation as the mitochondria-targeted group to an AIE active core cyanostilbene skeleton, is highly sensitive to viscosity changes due to the restriction of intramolecular motion (RIM) and inhibition of twisted intramolecular charge transfer (TICT) in high-viscosity systems. As expected, with the viscosity increasing from 0.903cP (0% glycerol) to 965cP (99% glycerol), CSP exhibited a significant enhancement (more than 117-fold) in fluorescence intensity at 625nm, with an excellent linear relationship between log I 625 nm and log η (R2 = 0.9869, slope as high as 0.6727). More importantly, using CSP we have successfully monitored the decreased mitochondrial viscosity during heat stroke for the first time. All these features render the probe a promising candidate for further understanding the mechanism underlying mitochondria-associated heat stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.