Abstract

Because many of the current multivariate statistical process monitoring (MSPM) techniques are based on the assumption that the process has one nominal operating region, the application of these MSPM approaches to an industrial process with multiple operating modes would always trigger continuous warnings even when the process itself is operating under another normal steady-state operating conditions. Adopting principal angles to measure the similarities of any two models, this paper proposes a multiple principal component analysis model based process monitoring methodology. Some popular multivariate statistical measurements such as squared prediction error and its control limit can be incorporated straightforwardly to facilitate process monitoring. The efficiency of the proposed technique is demonstrated through application to the monitoring of the Tennessee−Eastman challenge process and an industrial fluidized catalytic cracking unit. The proposed scheme can significantly reduce the amount of false alarms while tracking the process adjustment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.