Abstract

In this study, a novel hollow mesoporous carbon spheres-based fiber (HMCSs-F) was fabricated to immobilize HMCSs onto a stainless steel wire for solid-phase microextraction (SPME). Characterization results showed that the HMCSs-F possessed a large specific surface area, high porosity and uniform pore size. To demonstrate the extraction performance, a series of polycyclic aromatic hydrocarbons (PAHs) was chosen as target analytes. The experimental parameters including extraction and desorption conditions were optimized. Compared to commercial fibers, the HMCSs-F exhibited better extraction efficiency for PAHs. More interestingly, a good extraction selectivity for PAHs from the complex matrix was observed in these HMCSs-F. The enhanced SPME performance was attributed to the unique pore structure and special surface properties of the HMCSs. Furthermore, under the optimum conditions, the limits of detection (LODs) for the HMCSs-F were in the range of 0.20–1.15 ng L−1 with a corresponding relative standard deviation that was below 8.6%. The method was successfully applied for the analysis of PAHs in actual environmental water samples with recoveries ranging from 85.9% to 112.2%. These results imply that the novel HMCSs-F have potential application in environmental water analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.