Abstract

Monitoring of the earth's surface by remote sensing in the short-wave band can provide a quick identification of some characteristics of coastal Arctic ecosystems. This band range allows to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method is based on the organization of the monitoring probe and may detect changes in these environments, for example, to assess hazardous natural phenomena, assessing sustainability, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as e.g diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Accuracy new method on the order exceeds the widely-used standard method. Interpretation of the data is based on a statistical multiplicative model of the signal. Testing the method of obtained a signal/noise ratio in this model was produced by the example of a double reflection of the probe signal from the SW ionosphere in a vertical sounding (when using a satellite, the signal passes twice through the atmosphere and ionosphere). In this paper, a sensitivity of the model parameters was studied. To obtain the necessary experimental data, the pulse method of coherent reception was used. Analysis of analytical error of estimation of this parameter allowed to recommend a new method instead of standard method. A comparative analysis showed that the analytical (relative) accuracy of the determination of this parameter by a new method exceeded the widely-used standard method by the factor of ten.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.