Abstract
Metastatic breast cancer is a devastating disease with very limited therapeutic options, calling for new therapeutic strategies. Oncogenic miRNAs have been shown to be associated with the metastatic potential of breast cancer and are implicated in tumor cell migration, invasion, and viability. However, it can be difficult to deliver an inhibitory RNA molecule to the tissue of interest. To overcome this challenge and deliver active antisense oligonucleotides to tumors, we utilized magnetic iron oxide nanoparticles as a delivery platform. These nanoparticles target tissues with increased vascular permeability, such as sites of inflammation or cancer. Delivery of these nanoparticles can be monitored in vivo by magnetic resonance imaging (MRI) due to their magnetic properties. Translation of this therapeutic approach into the clinic will be more accessible because of its compatibility with this relevant imaging modality. They can also be labeled with other imaging reporters such as a Cy5.5 near-infrared optical dye for correlative optical imaging and fluorescence microscopy. Here, we demonstrate that nanoparticles labeled with Cy5.5 and conjugated to therapeutic oligomers targeting oncogenic miRNA-10b (termed MN-anti-miR10b, or "nanodrug") administered intravenously accumulate in metastatic sites, opening a possibility for therapeutic intervention of metastatic breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.