Abstract

A rapid and accurate yield estimation is of great significance to the management and sustainable development of Camellia Oleifera forests. Consequently, the simultaneous and accurate detection of key phenology features of Camellia Oleifera (buds, flowers, fruits) is crucial for precise yield estimation. This not only enables robotic harvesting but also allows for the prediction of peak flowering and fruit ripening periods to determine the optimal harvesting time. However, in recent studies, only Camellia Oleifera fruits have been marked and detected. Therefore, to enable rapid yield estimation, it is necessary to simultaneously detect the key phenology stages (buds, flowers, fruits) of Camellia Oleifera. In this study, we annotated, trained, and predicted Camellia Oleifera buds, flowers, and fruits collected via field cameras to observe their daily quantitative changes. Quantity change curves were generated to estimate crucial phenology stages. Phenology feature detection and transfer learning were performed using the YOLO v5 model, widely used YOLO v3 model, and CenterNet model with center point prediction, all trained on the same dataset. The best model for phenology feature detection was selected based on a comparison of average precision, with the YOLO v5 model achieving a higher mean Average Precision (mAP) value of 91.31 % compared to the CenterNet (85.43 %) and YOLO v3 (81.00 %) models. In YOLO v5, the AP values for bud, flower, and fruit detection were 82.80 %, 98.13 %, and 92.99 %, respectively, surpassing the CenterNet model by 3.97 %, 2.44 %, and 11.23 %, and the YOLO v3 model by 6.39 %, 17.13 %, and 11.67 %. The image size was adapted from 4000 × 3000 pixels to 512 × 512 pixels for model optimization. Additionally, data from the Seedling Center of Liuyang City collected at different years and times were utilized to showcase the generalizability and scalability of the selected models, resulting in mAP values of 86.14 %, 80.17 %, and 69.20 % for the three above-mentioned models respectively. The plotted phenology change curves unveiled that Camellia Oleifera undergoes four stages: fruit enlargement period, bud enlargement period, flowering period, and flower wilting period. The conclusion can be drawn that using field cameras and YOLOv5 can simultaneously achieve real-time detection of key phenology features (buds, flowers, and fruits) of Camellia Oleifera, in order to further record crucial phenology patterns (such as flowering peaks and fruit ripening periods). This study offers theoretical references and scientific evidence for monitoring changes in key phenology features of Camellia Oleifera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.