Abstract

The results of a series of 24-hour observations of radio-source interplanetary and ionospheric scintillation performed on April 4–10, 2006, at the Pushchino Radio Astronomy Observatory are presented. The observations were carried out with the Large Phased Array radio telescope of the Lebedev Institute of Physics, Russian Academy of Sciences, at a frequency of 110 MHz. The scintillating fluxes of all radio sources that fall within a field of sky between declinations +28° and +31° were automatically recorded applying eight beams of the reception pattern operating simultaneously. All of the sources with flux densities of 0.2 Jy or higher were detected. The structure functions of the flux fluctuations were measured for time shifts 1 and 10 s, which characterize the interplanetary (1 s) and ionospheric (10 s) scintillation, respectively. The mean scintillation index m IPP (on a characteristic time scale of 1 s) of an ensemble of radio sources located within a sky band 4° wide in declination and 1 h wide in right ascension was measured as the parameter that characterizes the interplanetary plasma. Diurnal variations of the interplanetary scintillation index were determined. The maximum m IPP value at daytime equals 0.3, and the minimum value at nighttime equals 0.10. Weak interday variations of the mean daytime and nighttime scintillation indices were detected. The ionospheric scintillation indices m Ion are small compared to m IPP at daytime, but m Ion ≅ m IPP at nighttime. On the whole, both the interplanetary plasma and ionosphere were quiet during the observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call