Abstract

Motor current signature analysis (MCSA) has been widely investigated in order to monitor fault conditions of induction machines. On the other hand several solutions were proposed for the detection of rotor speed of induction motor for sensorless control. Another deeply investigated field of research is the detection of supply frequency of power lines, for the diagnosis of the distribution network. A common root of these three key topics is the need of accurately stating specific spectrum frequencies. Several techniques were presented in the literature in order to perform accurate tracking of frequencies for different purposes. They are modified versions of the traditional discrete Fourier transformation (DFT), or novel spectrum estimation techniques. This paper presents a novel procedure based on the statistical analysis of the current signal in the time domain, referred to as maximum covariance method for frequency tracking (MCMFT), that allows to obtain high frequency resolution accuracy independently of the sampling frequency and of the time acquisition period. Therefore those spectrum lines related to supply frequency or to slip can be detected with extreme accuracy within a wide range of sampled data conditions. Then either an accurate diagnosis of the machine electric faults or sensorless control, or distribution network diagnosis can be performed. Comparison between the proposed method and the literature are reported, in order to critically analyze its performances. An induction machine with two artificially broken bars was used for the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.