Abstract

This study evaluated the performance of a multiple-scattering Compton camera (MSCC) for in vivo monitoring of the dose distribution of therapeutic photons in various phantoms. When 6-MV photons interacted with materials in the phantom, most photons deposited part of their energies on the voxels and were scattered out of the phantom. The 3D distribution of the scattered photons detected by the MSCC was reconstructed by using image processing methods based on Compton kinematics. The optimized design parameters from previous studies were used in the current system. In order to verify the accuracy of dose estimation by using MSCC, the results of depth-dose distribution curves in the phantom were compared with theoretical values calculated by MCNPX for various phantoms. The dose distribution of scattered photons showed similar trends to the deposited dose of incident photons in various phantoms. For realistic visualization, the reconstructed Compton images were combined with Computed Tomography (CT) images of the phantom. The results of this study demonstrated the feasibility of using Compton imaging as a means of monitoring the 3D dose distribution of the therapeutic photons in radiation therapy. The combination of Compton and CT images of the human phantom highlighted the effectiveness of our MSCC for monitoring patient doses in 3D photon therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.